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In this paper, systems with higher order regular lagrangians are reduced to be first-
order singular lagrangians using constrained auxiliary description. The new extended
lagrangians are investigated using the Hamilton-Jacobi formulation. Besides, the action
function is obtained and the system is quantized using the WKB approximation.
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1. INTRODUCTION

The Hamiltonian formulation for singular lagrangian has been initiated by
Dirac (1950, 1964). This subject has defined an area of specialization in mathemat-
ical physics (Faddav and Jackiw, 1988; Henneaux and Teitelboim, 1992; Longhi
and Lasanna, 1987). Dirac’s approach distinguishes between two types of con-
straints, the first-and second-class. Many physicists believe that, this destination
is important in the classical theories as in quantum theories.

More recently, an approach based on Hamilton-Jacobi formalism was devel-
oped to study singular first-order systems (Guler, 1992, 1996; Rabei and Guler,
1992a, 1992b). In this approach, the equations of motions are written as total
differential equations in many variables. Besides, there is no need to distinguish
between the two types of constraints. In Rabei et al. (2002), the action integral is
determined and systems with first order Lagrangian are quantized using the WKB
approximation. In addition, the Lagrangian with linear velocities are quantized in
Muslih et al. (2005).

The Hamiltonian formulation for systems with higher order Lagrangian ini-
tiated by Ostrogradsky (1850). This formalism seems to be different from the
conventional canonical formalism. The structure of phase space and its simplistic
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geometry is not immediately transparent. This leads to confusion when considering
canonical or path integral quantization.

The higher-order Lagrangians treated as singular first order Lagrangians
in Pons (1989). A canonical formalism presented using the Dirac’s method for
constrained systems. In this work, systems with regular higher order Lagrangian
treated as systems with singular first order Lagrangian using the Hamilton-Jacobi
approach (Guler, 1992, 1996; Rabei and Guler, 1992a, 1992b). The action function
is determined using the proposed theory given in Nawafleh et al. (2004). Besides,
this action used to determine the solutions of the equations of motion for higher-
order Lagrangians. Then, systems with higher-order Lagrangians quantized using
the WKB approximation.

2. REVIEW OF THE HAMILTON-JACOBI FORMULATION

For any physical system, the Lagrangian L = L(g;,¢;), i =1,2,..., N is

called regular if the rank of the Hessian matrix W;; = 3;732 - is N. Otherwise, it is
i %9

called singular.
The generalized momenta p;, corresponding to the generalized coordinates
q; defined as:

aL

= i=1,2,....,N 2.1
dq’

Pi

If the rank of the Hessian matrix is (N — R) then, the definition (2.1) leads
to relations of the form:

H/(qi. pn) = pu + H, =0, u=N—-R+1,...,N; (2.2)

Following to Dirac these relations are called primary constraints (Dirac, 1950,
1964).

Following Guler (1992, 1996) and Rabei and Guler (1992a, 1992b) the cor-
responding set of the HIPDE’s written as:

, 9 35
H0=p0+H0=E+HO CIﬁ:CImPa:g =0

, N as
H;L:pu‘l'Hu:@"‘Hu QﬂanaPazaqa =0

Bp=0N—-R+1,...,N;a=1,...,N—R
(2.3)
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Hy Being the usual Hamiltonian, and S(z, ¢, g,,) being the Hamilton-Jacobi func-
tion. The equations of motion written as total differential equations:

dq, = 8Hédr—i— aH’;d
9= 3p, ape
OH/ 0H
dp; = ——2dr — Ldg,.
8(,],' aql
2.4)
These equations are integrable (Muslih and Guler, 1995; Muslih, 2004) if
dH ;,L =0 2.5)

These relations are identically satisfied or lead to new secondary constraints.
Then one can solve equations (2.4) to obtain the coordinates g, and momenta p,,
as functions of g, and .

A general theory for solving the set of Hamilton-Jacobi partial differential
equations for constrained systems (2.3) proposed in Rabei er al. (2002). The
solution is given in the form:

S(t, qa> qu) = f(0) + Wa(Ea, ga) + frulgu) + A (2.6)

Where E, are (N — R) constants of integration, and A is another constant. Here
q,, treated as independent variables, just as the time ¢, in addition, the equations of
motions are obtained using the canonical transformation as follows:
a0S aS
“eE, U T ag
Where, , are constants and they can be determined from the initial conditions.
These equations can be solved to furnish ¢, and the momenta p, as:

Ma 2.7

qa ZQa(Mav Eaaq;/,»t)s Di =Pi(l$a7 Easqlut)- (28)

3. OSTROGRADSKY CONSTRUCTION FOR HIGHER
ORDER LAGRANGIAN
The starting point is to consider a lagrangian with N generalized coordinates
and depends on up to the m-th time derivatives i.e.

(s)

. ). ® _ dagi
L(q,-,qi,...,qi ), qi = 770 3.1
where s =0,1,...,mand i =1, ..., N. For such systems the Euler-Lagrange

equations of motions, obtained through Hamilton’s principle of stationary action,
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as:

Sy () (32)
dts aql(s) - .

s=0

This is a system of N ordinary differential equations of 2m — th order, so we
need 2mN initial conditions to solve it.

The Hamiltonian formalism for theories with higher order derivatives
(Ostrogradsky, 1850), treats derivatives qi(s)(s =0,...,m — 1)as coordinates. So
we will indicate this writing them as qfs) = q(s)- In Ostrogradski’s formalism, the
momenta conjugated respectively to g(,—1) and gi—1)i(s =0, ..., m — 1) intro-
duced as Ostrogradsky (1850).

JL
Pin-1i = —5 (3.3)
aq;
JL )
P(s—l)i ET_IJ(‘Y»; s:l,...,m—l (34)
g,
The Hamiltonian defined as:
m—1
H = Z P(S)iqi(s+1) — L(ql ..... l(m)) (35)
s=0

(The Einstein’s summation rule for repeated indices has been used throughout this
work).
Hamilton’s equations of motion are written as

. _ oH _ 16

qis)i = o {q)i> HY, (3.6)

Py = — oH = {Py)i, H}, 3.7
8P(5),~

where {,} is the Poisson bracket defined as

m—1

(433 JA 2B _ 0B o4 48)
’ = 04453 0P 045y Py '
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4. THE HAMILTON-JACOBI TREATMENT OF HIGHER
ORDER REGULAR LAGRANGIANS AS FIRST ORDER
SINGULAR LAGRANGIANS

For simplicity, let us consider higher order Lagrangian of one degree of
freedom,

. dl‘ﬂq
Lo(g.4,...,q"™) Where ¢™ = o 4.1
Now let us introduce new variables ¢; and required the constraints.
41 = qi+1, 1=0,1,...,.m—2 4.2)

Where

q0 =4
Then, we construct the singular first-order lagrangian as:
Lr(qi, gm—1, 415 Gm-1, M) = Lo(q1, gm-1, gm—-1) + 2i(qi — qi41) (4.3)
And the canonical Hamiltonian reads as:
Hy(q1, gm—1, Pn—1, M) = pigi + Pm—1§m—1 + 7k = L1, Gm—15 G1 Gm—1, M)

“4.4)
Where

aLy dLp dLp
= s op= =\ W =——
aqm—l bi ! ! 8)"1

Pm-1 =0 4.5

g
Following to Guler (1992) and Rabei and Guler (1992), the set of Hamilton-Jacobi
partial differential equations takes the form:

H| = P + H/(q1, gu-1, Pm—121) (4.6)
P =m 4.7
H =p—N (4.8)
Where

aS aS
Pr = 57 = 3_)»[’

as aS
pr= 8_q1 Pm-1= s

Moreover, the equations of motion can be written as total differential equa-
tions as follows:

oH] Lol oH)/

dq, = —dt + —Ldx + —

dps Ips ps

dq 4.9)
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OH, 3, OH/

dps = ——Ldt — —Ldr, — —Ldg (4.10)
9g;s G : 9qs :
OH/ P! dH/
dir, = a—ntdt + aﬂ’dxs + Bnl dq, 4.11)
H/ D! dH/
dm, = — ak’dl — m’d}\; — Mldql (4.12)

where s =0,1,...,m —landr =0, 1, ..., m — 2 Making use of Eqs. (4.6-8),
the previous equations can be written in the following form:

dqr =dq (4.13)
oH/
dgm_1 = —21_ gy (4.14)
3Pm71
oH/
dp = — 2t gy (4.15)
q
oH’
dpy1 = ——21 gy (4.16)
a(/]m—l
dr = dA, 4.17)
oH/
dr = -0 di + dg (4.18)
A

The total differential equations are integrable if, and only if,

dH' =dp, —dH, =0 (4.19)
dH] =dp, —d), =0 (4.20)
d®, = dm =0 4.21)

Using Eq. (4.15), then Eq. (4.20) can be written as:

oH/
S gt dr =0 4.22)
dq

Thus, the integrability conditions lead to:

. 9H/
M=— 4.23)
g
In addition, Egs. (4.18) take the form:
. OH; |
i =—t 4 g (4.24)

o



890 Rabei and Tarawneh

Thus, the equations of motion can be written as:
dH|

Ps = (4.25)
9qs
oH/
7. = 4.26
@ =5 (4.26)
0H/
G-l = 7—— (4.27)
Opm—1
These equations are equivalent to the following Euler-Lagrange equations
d (0L oL
(=) =L =0 (4.28)
dt \ 9q g
d ( 0L oL
(=) - =2 =0 (4.29)
dt 86]m—l 8qm—l
d (0L oL
—(=f)-=L=0 (4.30)
dt \ 9\ oA
Equations (4.30) give the constraints (4.2). While, Eqgs. (4.28) for the variables
qi+1 can be written as:
d (dL oL
—(.T)— L —o 4.31)
dt \ 9gi+1 G141
Making using of Egs. (4.3) and (4.5), Eqs. (4.31) take the form:
d Lo
— — A =0 4.32
or (pr+1) S + X (4.32)
which, can be written as:
dLo .
P = — Dia1 [=1,2,....m—2 (4.33)
9q1+1

These equations can be arranged as:

Di+1 = % — Di+2
(4.34)
Pm—2 = 32{21 - f’m—l

Using back substitution, we get
dL d (dL d*> (dL
P = 0——( °)+—2<—°>+
g1 dt \9qu42 dt> \ 9qi43

dm—l—l aLO
m—1
D <m> (4.35)
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Moreover, these equations represent the momenta in Ostrogradsky construction
(Ostrogradsky, 1850).
If I =0, Eq. (4.35) takes the form:

9Ly d (dLo +d2 dLo n
Po= g T ai \aqx ) T ar ags

dm™' [ 9L,
—1! . 436
+(=1D gy <qu_1> (4.36)

Taking the first derivative with respect to ¢ for Eq. (4.36), we get
oLy _ d (3L d* (0Lg d* (0Lg N
dqo dt \ 9q, dt® \ 9q dt3 \ g3

+ (=" d” (Lo \ _ (4.37)
dem aqul o )

This equation can be written as
Lo d (dLy n d*> (dL d* (9L n
dg  dt \ g dr? \ 9§ dr3 \ 9g®

an dLgy
n—([—/)=0 4.38
=D drm (86]“’0) (+38)

Which can be finally has the form:
= , d® (0L
;(—1) o) <%> =0. (4.39)

This equation is the Euler equation for regular higher order lagrangian
(Pimentel and Teixeira, 1998).

4.1. The Hamilton-Jacobi Function

The set of HIPDE’s (4.6—8) can be written in the following form:

0S 0S5 0S5
H = —+H, Gm—1, M, —,—— | =0 4.40
P =, + H; (QI Gm-1,M oa 3qm1> (4.40)
a5
P =—=0 4.41
alrry 4.41)
. aS
H=<2_5=0 (4.42)

aq
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Making use of Eq. (2.6) the action function takes the form
S@Gm-15q1s 7, 1) = f&) + Wyt (Ep—1, gm—1) + filg) + i) + A (4.43)

Where, E,_; is the constant of integration. Here ¢; and A; are treated as
independent variables as well as the time. The equations of motion are obtained
using the canonical transformations (Nawafleh ez al., 2004) as follows:

aS as N

Eny T T 0 T o
Where, (., is a constant and can be determined from the initial conditions.
Egs. (4.44) can be solved to obtain g,,—; and the momenta p; as:

Hom—1 (4.44)

Gm-1 = qm-1Wm-1> Em—1,q1, 21, 1), pr = pi(km—1, Em—1, q1, 1, 1) (4.45)
Using Eqgs. (4.41) and (4.43) one can find that:

A0 _
OA
Thus,
f/ () = constant (4.46)
In addition, from Eq. (4.44), one finds,
d
fila) =0
g
Sila) = Mq 4.47)
Moreover, using the fact that f(#) = —E,,_¢ one can write the Hamilton-Jacobi

function in the following form:
SGm-1,q1s 7, 1) = —Ep 1t + Wy 1 (Ep1, Gm—1) + hiqr + A’ (4.48)

Where A’ is constant.

4.2. The WKB Approximation

A general theory for using the WKB approximation for constrained systems
to find the wave function and the connection between the classical and Quantum-
mechanical equations of motion has been given in Rabei et al. (2002). According
to this theory, the wave function for our system can be written as:

i8] dm—1M D
V(qis gm-1, A, 1) = Yom-1(gm-1)e 7 (4.49)
Where
1

Vom-1an-1) = —ee—
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The wave function in Eq. (4.49) satisfies the following conditions
HvY =py+Hy =0
QY =my =0 (4.50)
Hy =py =y =0

These conditions are obtained when the dynamical coordinates and momenta are
turned into there corresponding operators:

R h o0
Ps = Ps = — s (451)
i g
H h 9 (4.52)
— = -, .
Po Po Y
i h (4.53)
T > A=, .
P T T o

5. ILLUSTRATIVE EXAMPLE

Consider the following second-order Lagrangian

_l )
L= 2(61 q°) (5.1)

Which is describes the one-dimensional motion of black box in which a harmonic
oscillator is hidden (a system of units is chosen such that the angular frequency of
oscillations is one) (Olga, 1997).

This example has been solved using the Ostrogradsky theory and the results
found to be:

q =at+bcost+98)+c 5.2)
_ oL . 53
Po—m—m——a (5.3)
——8L =-b ) 5.4
D= g =T cos(t + 8) (5.4

Where a, b, ¢ and § are constants.
According to our treatment, the above Lagrangian can be written as:

1 .
L=3(¢—aqi) Where ¢=g 0=gq
With the aid of Eq. (4.3) the extended lagrangian is

Lr =242 = a2 4200 - 5.5
T—qu 2611+ 0(‘]0 111) ()
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Moreover, using Eq. (4.5), one finds that:

oLt |
P = — =41,
01
oLt
Po = ——— = Ao;
dqo
JL
T = —T =0.
dAg

The canonical Hamiltonian can be obtained as:

pi 1
H, = 71 + zq% + Aogi (5.6)

Thus, the set of HIPDE’s can be written as:

r_ _ p% 12
H, —pf+Hz—pz+7+§q1 + Xoqi
by =m=0 5.7
Hy=po—2 =0

Using the Egs. (4.23), (4.25), (4.26) and (4.27), one gets

Po=0 (5.8)
4o = qi 5.9
PL=—q1— o (5.10)
g7 = p2 (5.1

Equation (5.9) represents the constraint and using the integrability condition (4.23),
one finds

. oH/
A= — =0 (5.12)
990
Thus, Eq. (5.10) leads to:
Prt+q=0 (5.13)
Using Eq. (5.11), one finds:
¢ +q1=0 (5.14)

Where p, equals top;, and using Eq. (5.9), we have:
g¥+4=0 (5.15)
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Thus, the general solutions are

q =at+bcost+98)+c (5.16)
= oL ) = 5.17
Po—m—m——a (5.17)
——8L =-b 1) 5.18
D= g = cos(t + 8) (5.18)

Where, a, b, ¢ are constants. These solutions are in exact agreement with the
solutions (5.2-4).
The corresponding HIPDE'’s are calculated as:

s 1 /8S\> 1

H=—+-(— —g> 4+ 2oq1 =0 5.19

(=3 +2<8q1> +2611+ 0q1 (5.19)
BN

P = — =0 5.20

0= Ir (5.20)
BN

Hj=——2=0 (5.21)
990

According to Rabei et al. (2002) and Nawafleh ef al. (2004) the general proposed
solution for this set of equations can be determined as:

S(q1, qo, ko, 1) = —E1t + Wi(E1, q1) + Xogo + A’ (5.22)
Substituting Eq. (5.22) in Eq. (5.19), we have

1L owi\> 1,
—E - — — Mg =0 5.23
1+2<aql)+26]1+ 0q1 (5.23)

and this equation leads to

Wilqr. Ev) = f V2B + 23— (@1 + 207dg, (5.24)

Thus, the Hamilton-Jacobi function becomes

S=—-FEit+ / \/2E1 —i—)»%) —(q1 + Xo)?dg; + hogo + A (5.25)

The solution for the generalized coordinates are obtained using Eqs. (4.44):

as dq
! \/2E1+)»%—(611+)»0)2
3S
To = 1 dqi (5.27)

T
0 V2E 432 — (@1 + 2P
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These two equations are solved respectively, to give

q1 = ,/2E1 +)\.(2) Siﬂ(/L] +t) - )\.() (528)
g =—M(p1+1)—4/2E, + A3 cos(u1 + 1) (5.29)

This solution is equivalent to the solution obtained in (5.16).
Besides, the generalized momenta can be determined as

as

po= 5 = (5.30)
a8

P1 Za—qlz\/ZEl-i-)\(z)—(ql-F)\())z (531)

Substituting Eq. (5.28) in Eq. (5.31), we have the following solution.

p1 = J2E; + A2 cos(uy +1) (5.32)

Again, it is equivalent to solution (5.18).
The wave function for our Lagrangian can be determined using Eq. (4.49) as:

iS(q1.90.40.1)

¥ (q1, 90, Ao, 1) = Yor(qi)e & (5.33)
Where
1 -1
= ——=[E + 1) — (@1 +2)’] .
Yo1(q1) NEeD) [(2E1 +15) — (g1 + X0)’]
And

S=—Et +/\/2E1 + A3 — (q1 + 20)2dq1 + Aogo + A’

Taking the limit, # — 0, this wave function satisfies the following conditions:

g = |2 h? a2+12+A =0
A A 2 3g° 2611 091 =0,
h o
DYy = ——y =0; 5.34
oV ia,\o‘[’ (5.34)

o hod
Hyyp = —— ¢ — Aoy =0.
i 990

6. CONCLUSION

In this paper, the higher order regular Lagrangians treated as first-order
singular Lagrangians. In physical terms, this means that each velocity ‘% replaced
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with a new function g;and then, the constraint g; — fl—? = O 1is added to the original

Lagrangian. In the same manner, the acceleration is replaced by ¢, and so on. In
other words, the new Lagrangian is of first-order singular Lagrangian.

The extended Lagrangian treated using the Hamilton-Jacobi approach. The
action function obtained and the system quantized using the WKB approximation.

Most of the literature in physics on the Hamiltonian treatment of higher order
lagrangian used Ostrogradsky’s method. This method is written in an ambiguous
mathematical language. The time derivatives of the coordinates of different order
have to be considered as being independent. In our treatment, the equations of
motion are written and the system is quantized using the natural mathematical
language. We believe that in this treatment, the local structure of phase space
and its local simplistic geometry is made more transparent than in Ostrogradsky’s
approach.

The generalization of this treatment to N degrees of freedom and to the
singular systems is straightforward.

ACKNOWLEDGMENTS

This work is partially, supported by the deanship of the scientific Research
of Jerash Private University

REFERENCES

Dirac, P. A. M. (1950). Canadian Journal of Mathematics 2, 129.

Dirac, P. A. M. (1964). Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva
University, New York.

Faddav, L. and Jackiw, B. (1988). Physical Review Letters 60, 1692.

Guler, Y. (1992). Il Nuovo Cimento B 107, 1143.

Henneaux, M. and Teitelboim, C. (1992). Quantization of Gauge Systems. Princeton University Press,
Princeton.

Longhi, G. and Lasanna, L. (1987). Constraint’s Theory and Relativistic Dynamics. World Scientific.

Muslih, S. and Guler, Y. (1994). Il Nuovo Cimento B 110, 307.

Muslih, S. (2004). Mod Phys. Lett. A 19, 863.

Muslih, S. I., Elzalan, H. A., and Rabei, E. M. (2005). International Journal of Theoretical Physics
44, 1271.

Nawafleh, K. I., Rabei, E. M., and Gassib, H. B. (2004). Journal of Modern Physics 19(3), 347.

Olga, K. (1997). The Geometry of Ordinary Variational Equations. Lecture Notes in Mathematics
1678, Springer-Verlag, Berlin.

Ostrogradsky, A. (1850). Mémoires de I’ Académie de Saint Peters bourg VI (1850) 385.

Pons, J. M. (1989). Letters in Mathematical Physics 17, 181.

Pimentel, B. M., and. Teixeira, R. G. (1998). Il Nuovo Cimento 113B, 805.

Rabei, E. M. and Guler, Y. (1992). Physical Review A 46, 3513.

Rabei, E. M. and Guler, Y. (1992). Turkish Journal of Physics 16, 297.

Rabei, E. M. (1996). Hadronic Journal 19, 597.

Rabei, E. M., Nawafleh, K. L., and Ghassib, H. B. (2002). Physicl Review A 66, 024101.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


